Fraunhofer IAP

Company Type:  
Companies

Fraunhofer IAP logoThe Fraunhofer Institute for Applied Polymer Research (IAP) develops bio-based and synthetic polymers, from the laboratory to the industrial scale. Applications are diverse across many markets, such as bio-based packaging, lightweight materials, truck tires and more.

One of the applications being researched and developed at the Fraunhofer IAP is luminescent materials for displays. The IAP functional polymer systems division, looks into a broad range of materials, including light-emitting polymers and quantum dots. The focus lies in solution processing of these materials with a strong focus on printing methods.

Company Address

Geiselbergstr. 69
14476 Potsdam
Germany

Researchers develop OLED-based optogenetic stimulators for neurosensory therapy

Researchers from the Fraunhofer IPMS, together with colleagues from the Max Planck Institute for Multidisciplinary Natural Sciences (MPI-NAT) are developing OLED-based optical stimulators for future cochlear implants.

The researchers explain that optogenetics is a method that uses light to control genetically modified cells in living tissues. By introducing light-sensitive proteins into cells, their activity can be precisely turned on and off with light pulses. This technique is commonly used in neuroscience to study the functions of nerve cells and to activate or inhibit specific neuronal populations.

Read the full story Posted: Sep 19,2024

The Fraunhofer IPMS manages to increase the transparency of its OLED microdisplays to 45%

A few months ago researchers from the Fraunhofer IPMS announced that they have developed semi-transparent yellow high resolution OLED microdisplays, that are significantly lighter than conventional combiner-based optical see-through near-to-eye systems. 

The Fraunhofer IPMS now announced that it has managed to increase the transparency of these microdisplays to 45%. 

Read the full story Posted: Aug 08,2024

Researchers at the Fraunhofer IPMS develop semi-transparent OLED microdisplays

Researchers from the Fraunhofer IPMS have developed a semi-transparent high resolution OLED microdisplay, that is significantly lighter than conventional combiner-based optical see-through near-to-eye systems. The specification of the display was not disclosed, but one can see it's a monochrome yellow panel.

The Fraunhofer researchers developed a new semi-transparent OLED-on-silicon microdisplay technology, which enabled the new display. The technology is based on modern and advanced silicon CMOS processes, applied to silicon-on-insulator (SOI) wafers. The new wafer technology can be used to implement very thin circuitry layers. With the help of a specific IC design and an appropriate transfer-to-glass process flow, the transparent OLEDs were enabled.

Read the full story Posted: Apr 25,2024

The Fraunhofer FEP showcases its latest OLED microdisplays at Display Week 2023

During Display Week 2023, the institute demonstrated its latest displays, including the world's highest-density OLED microdisplays, reaching a PPI of 10,000 with a pixel size of only 2.5 um.

Fraunhofer's 10,000 PPI display was e a 0.18" 1440x1080 (monochrome) panel, produced on 300 mm wafers, using a 28 nm backplane process. The Fraunhofer also showcases ultra low-power microdisplays, and more technologies.

Read the full story Posted: Jun 03,2023

The Fraunhofer FEP developed the world's highest density OLED microdisplay, reaching 10,000 PPI

The Fraunhofer FEP research institute announced that it has developed the world's highest-density OLED microdisplays, reaching a PPI of 10,000 with a pixel size of only 2.5 um. The Fraunhofer will demonstrate a 0.18" 1440x1080 (monochrome) OLED microdisplay next week at Display Week 2023.

The new microdisplays were produced on 300 mm wafers, using a 28 nm backplane process. The Fraunhofer explains that most OLED microdisplays to date are produced on 200 mm wafers, using CMOS processes ranging from 90-250 nm. The institutes new technologies enables the the performance increase in OLED display processing. 

Read the full story Posted: May 16,2023

The Fraunhofer Institute develops ultra-low power OLED microdisplays

The Fraunhofer FEP, in collaboration with GlobalFoundries Dresden Module One and digades, developed an ultra-low power color OLED microdisplay. The researchers at the Fraunhofer say that this display consumes the least power compared to all available microdisplays.

Fraunhofer Backplane ultra-low power microdisplay prototype photo

The new microdisplay was developed as part of the Backplane project, funded by the German government (SWMA grant number100392259). The researchers presented a prototype display that features two primary colors and a QVGA (320x240) resolution. The display is based on the Fraunhofer's existing OLED-on-silicon technology, which up until now was used to create monochrome microdisplays.

Read the full story Posted: Nov 27,2021

OLED webinar to introduce OLED lighting manufacturing and R2R production

An AILU (Association of Industrial Laser Users) webinar, scheduled for September 15, will introduce the basics of OLED lighting, discuss the choice for the right substrate and encapsulation material as well as the current status of roll-to-roll processing. The webinar is sponsored by 3D Micromac, the industry leader in laser micromachining and roll-to-roll laser systems.

The webinar will also show results from the EU-funded LAOLA project, which is a collaboration between German and Japanese companies and research institutes. The LAOLA project, led by the Fraunhofer FEP, develops the use of ultra-thin flexible glass as a substrate and encapsulation material in roll-to-roll technology for this purpose.

Read the full story Posted: Sep 07,2021

The Fraunhofer FEP shows its latest OLED technologies, creates a new virtual tour of its facilities

The Fraunhofer FEP Institute published this nice video that shows its latest technology innovations, including its OLED (regular and bi-directional) microdisplays, its new AR/VR optics, flexible OLED lighting panels, its Monarch flexible and transparent OLED panels, sensor and coating technologies and more.

The Fraunhofer FEP also created and published a new virtual tour of its facilities, where you can have a look inside the labs and flexible organic electronics R&D clearnroom.

Read the full story Posted: Feb 04,2021

Notion Systems, MBraun and the Fraunhofer IAP develop a novel display industrial production process based on inkjet printing

Notion Systems, MBraun and the Fraunhofer Institute for Applied Polymer Research (Fraunhofer IAP) are co-developing new inkjet production technologies, aimed for the display market - specifically for OLED, QD and microdisplays.

The Fraunhofer IAP OLED production line (Potsdam)

The three partners are combining their respective competencies to present themselves together as a partnership supplier off all-in-one solutions. The Fraunhofer IAP is developing custom-made processes for display manufacturing with tailor-made inks. To achieve an industrial-scale best-in-class process solution, the parties are looking into all major pre-and post-processing steps, the substrate and the production equipment such as the inkjet print head.

Read the full story Posted: Dec 18,2020

SEL developed a flexible OLED with embedded photo detectors between the OLED pixels

Researchers from Semiconductor Energy Laboratory (SEL) developed flexible OLED displays that incorporate organic image sensors inside the OLED pixels using side-by-side patterning. The sensors can be used as cameras for applications such as fingerprint sensing - which will work on the entire display.

SEL 8'' flexible OLED with OPD, SID DW 2020
SEL presented two prototypes, one a 3.07" 360x540 (212 PPI) display and the second is a 8" one with a higher pixel density of 302 PPI. SEL says that the fingerprint recognition works even when the display is bent.

Read the full story Posted: Aug 09,2020