Phosphorescent

DSCC: the OLED materials market grew 22% in 2024, Chinese material makers enjoy a sharp increase in demand

DSCC (now part of Counterpoint) says that OLED evaporation material sales will grow 22% in 2024, and will continue to grow at a 6.4% CAGR from 2024 to 2028. Most of the growth will come from IT display panels, for laptops, monitors and tablets.

Interestingly, DSCC estimates that Chinese material developers enjoyed a 58% increase in sales in 2024 to $252 million. The primary reasons for this sharp increase in demand is increased utilization at Chinese AMOLED fabs, increased orders from local companies in China over sourcing these materials from the rest of the world, and new range of materials introduced by materials makers (as Chinese material developers move from intermediates production to emitters and dopants).

Read the full story Posted: Jan 08,2025

University of Michigan researchers develop a heavy metal free phosphorescence OLED emitter

Researchers from the the University of Michigan developed a new class of phosphorescence OLED emitters that do not contain heavy metals. The metal was replaced with a new hybrid material. The researchers collaborated with colleagues from Inha University, and Sungkyunkwan University.

In current phosphorescence  OLEDs, the emitters include a heavy metal, in most cases either iridium or platinum. These heavy metals generate a magnetic field that forces the same spin direction excited electron to turn quickly, resulting in faster light emission as it returns to its ground state. The researchers replaced the heavy metal with a 2D layer of molybdenum and sulfur near a similarly thin layer of the organic light emitting material, achieving the same effect by physical proximity without any chemical bonding. 

Read the full story Posted: Dec 13,2024

Researchers from SNU and Samsung identify a critical mechanism in OLED performance degradation, and use the knowledge to dramatically improve OLED efficiency and lifetime

Researchers from Seoul National University (SNU), in collaboration from colleagues from Samsung's SAIT institute, have identified a critical mechanism behind the performance degradation of OLED devices, the interfacial exciton-polaron quenching mechanism.

The researches have theoretically proposed a mechanism where excitons in the light-emitting layer are quenched by the accumulated charges at the interface. They followed with with experiments that have independently observed this phenomenon, identifying three key factors: interfacial barrier, exciton-polaron distance, and exciton lifetime. 

Read the full story Posted: Oct 30,2024

Researchers from Korea develop a new OLED intermediate layer material to improve the performance of blue phosphorescence OLED emitters

Researchers from Korea's UNIST institute, together with colleagues from Sungkyunkwan University have developed a new OLED intermediate layer material (with a highly unusual structure, twisted EBMs with anisotropic molecular arrangements) that significantly improves the brightness, efficiency and lifetime of blue phosphorescence OLED devices.

The researcher report that the new materials enable to reduce the operating voltage of the OLED display, thus enhancing the power efficiency by 24% and the operational stability by 21%. The researchers say that this new material can also be used for in-organic LEDs (including microLEDs).

Read the full story Posted: Oct 02,2024

Lordin reports on a highly efficient and stable ultra-pure blue phosphorescent OLED emitter

Researchers from LORDIN, in collaboratioon with researchers from Korea's Dankook University, Gachon University and Hongik University, have reported on a highly efficient and stable ultra-pure blue phosphorescent OLED emitter, based on Lordin's Tetradentate Pt(II) material Complex with a vibration suppression effect.

The researchers say that the new emitter offers a lifetime of 451 hours (LT50 at 1,000 cd/m2), and an EQE of 25.1%. The emission spectrum is extremely narrow - full width at half a maximum of 22 nm. The researchers further developed a tandem OLED device based on this new emitter, which achieves an EQE of 50.3% and a lifetime of 589 hours (LT 70).

Read the full story Posted: Sep 19,2024

Samsung Display plans to adopt new technologies with an aim to cut the power consumption of OLEDs by over 50%

During iMID 2024, Samsung Display's eVP Yi Chung said that the company plans to reduce the power consumption of its OLED panels by over 50%. SDC is developing several technologies, each contributing to the same efficiency goal.

SDC did not detail its plans exactly, but it did mention some of the new technologies it is working on - polarizer-free OLEDs (these have been commercialized already), multi-frequency driving (demonstrated by other OLED makers), tandem OLED architecture and the adoption of high efficiency blue PHOLED emitters.

Read the full story Posted: Aug 26,2024

LG Display to soon commercialize a tandem architecture blue phosphorescence OLED display

A report from Korea says that LG Display has successfully developed an OLED panel that is based on a blue phosphorescence emitter. The blue PHOLED, provided by Universal Display, offers 100% IQE, up from 25% used by current fluorescence emitters. This will result in around 20-30% power saving for the display itself (depending on the images shown).

A 13-inch tandem laptop OLED panel, LG Display

UDC has been developing blue emitters for many years, and recently the company said that the development will take a few more months and won't be ready in 2024. The main challenge is increasing the lifetime of the materials. However LG Display has adopted a tandem design to enable a commercially ready display, perhaps even sooner than UDC planned.

Read the full story Posted: Aug 22,2024 - 1 comment

Samsung Display: we develop blue OLED emitter technologies, both PHOLED and TADF based

Samsung Display's Lee Chang-hee, VP and head of SDC's research center, gave a talk during K-Display 2024, and updated that Samsung is progressing towards a next-generation blue OLED emitter technology in two tracks.

SDC is working with Universal Display, to adopt the company's blue PHOLED system. This is progressing, but SDC says that the pace is slow - indeed we heard from UDC lately that the introduction of a commercial material will take longer than expected.

Read the full story Posted: Aug 15,2024 - 1 comment

Next-generation OLED technologies that will enable brighter and more efficient displays

OLED displays have been gaining popularity rapidly, and are already the dominant smartphone display technology. OLEDs are also the display technology of choice in the smartwatch market, making inroads into the TV, monitor, laptop and tablet markets. The future of the OLED industry looks bright.

In recent years, the focus of the industry, beyond increasing capacity and reducing production costs, has been improving the performance of OLEDs in the areas of display brightness, efficiency, and lifetime. Brightness is required in many applications - from TVs (for HDR and to view in ambient lighting) through smartphones (outdoor viewing) to automotive, and efficiency is a plus in any scenario (but mostly in mobile displays). Display lifetime is already good enough for many applications, but in some cases (like automotive, and IT displays) it is critical. These three properties usually go together - if you can make more efficient OLED displays, you can drive them at a lower current to achieve the same brightness, and so lifetime increases, or you can achieve higher brightness, etc. 

Read the full story Posted: Jul 10,2024

Researchers find a new organic molecule with extremely fast phosphorescence, possibly enabling high efficiency OLED emission

Researchers from Osaka University have found that thienyl diketone, a new organic molecule, shows high-efficiency phosphorescence, and one that is more than ten times faster than traditional organic phosphorescence materials. Such a material could hold promise for highly-efficient phosphorescence emission without the use of heavy metals. 

The researchers explain that phosphorescence occurs when a molecule transitions from a high-energy state to a low-energy state, and it often competes with non-radiative processes (i.e. heat generation instead of light). This competition with the non-radiative process leads to slow phosphorescence and lower efficiency. This is solved by adding heavy metal into the emitter - but this new breakthrough achieves fast emission without the heavy metal.

Read the full story Posted: Jul 06,2024